skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bhaskar, Nishant"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mobile devices continuously beacon Bluetooth Low Energy (BLE) advertisement packets. This has created the threat of attackers identifying and tracking a device by sniffing its BLE signals. To mitigate this threat, MAC address randomization has been deployed at the link-layer in most BLE transmitters. However, attackers can bypass MAC address randomization using lower-level physical-layer fingerprints resulting from manufacturing imperfections of radios. In this work, we demonstrate a practical and effective method of obfuscating physical-layer hardware imperfection fingerprints. Through theoretical analysis, simulations, and field evaluations, we design and evaluate our approach to hardware imperfection obfuscation. By analyzing data from thousands of BLE devices, we demonstrate obfuscation significantly reduces the accuracy of identifying a target device. This makes an attack impractical, even if a target is continuously observed for 24 hours. Furthermore, we demonstrate the practicality of this defense by implementing it by making firmware changes to commodity BLE chipsets. 
    more » « less